
powered by Quality Without a Name

QWAN’s Little Book of
Systems

© 2017 QWAN – Quality Without a Name
www.qwan.eu

edition: June 2017

In steering your development process you adopt a simple set of
practices that give you the feeling that you want. As development
continues, you are constantly aware of which practices enhance
and which practices detract from your goal. Each practice is an
experiment, to be followed until proven inadequate.

from: Kent Beck, eXtreme Programming Explained 1st ed., p. 28

QWAN’s little book of systems - Promise is debt

At QWAN, we like to think both big and small at the same time. We practice things
like continuous delivery and test-driven development, because they make us go fast
now, and help to keep our pace sustainable in the future.

Systems thinking with diagrams of effects helps us make sense of the practices we
explore and the challenges we face. It also helps us build shared understanding, within
our teams and with our customers.

Workshop in a box

For this little book of systems we have adapted a story about technical debt we have
used to teach systems thinking. We have added the steps we use to create diagrams
of effects from someone’s story, so you can create your own diagrams for your stories.
It’s like a workshop in a box.

The story we use is called Promise is Debt - promising too much to customers leads
to technical debt, which makes it harder. . . to fullfil promises to customers.

Willem van den Ende, Marc Evers & Rob Westgeest

c© 2008-2017 QWAN – Quality Without a Name

Revised edition August 2017

1

�

2

Introduction

Did you ever. . .

. . . feel you have no grip on the situation?

. . . try to solve problems but the team seems to be stuck in a vicious circle?

. . . put out fire after fire, where putting out one fire seems to ignite the next one?

We tell the story of a team making promises to their customer in such a way that it
becomes almost impossible to fulfil them. . . This creates a downward spiral of making
promises, breaking promises, and making new promises to compensate their customers’
disappointment. In the end, both the team and the customers lose trust and the team
loses its credibility.

We will show what the underlying causes are and how you can really tackle the situation,
using storytelling and systems thinking with diagrams of effects.

Systems thinking sees a system in terms of variables that influence each other. Systems
thinking focuses on the interdependence of parts instead of linear cause-effect relations.
It is about seeing the whole, and looking at the dynamics and change, with feedback
playing an essential role.

Figure 1: We only see events on the surface, the rest is hidden from us.

3

When we react, we tend to see only events - things that are happening right now or
that have happened recently. It is hard to make sense of something when we only
look at events. If we do that, we have knee-jerk responses and fight fires, instead of
looking at underlying patterns, structures, and mental models.

Our mental models are very influential in what happens around us, but often hard
to identify - the fish is always the last to see the water. Understand and (slowly. . .)
change your mental models, and change the world.

Systems thinking with diagrams of effects helps to make mental models of different
stakeholders more explicit and to see not-so-obvious effects and self-reinforcing loops.
This makes it easier to find effective interventions.

Disclaimer : it is not necessarily easy to do though. Understanding what you did not
understand before by surfacing tacit knowledge can be painful.

A process to tell a story and get a diagram

If you are in a difficult situation it is hard to make heads or tails from it. Telling a
story helps, making a visual with the story encourages you to find more details, to
ask more questions. Once you understand the situation better, you can come up with
more effective interventions. The diagram(s) you and your group come up with can
sometimes be useful in explaining the situation and your proposed solutions to others.
Be aware though that the story and the diagrams only reflect the understanding of
those who were in the room at the time of making it, so be open for suggestions and
other views when presenting the results.

These steps do not have to be followed linearly, as you will see in our story below. We
do recommend brainstorming variables before moving on to the next step, even if you
end up discarding most of them later on, because it is easy to get stuck in a particular
definition of ‘the problem’ early on.

1. Tell the story. Ask questions, determine scope. It helps if you do this in a group,
one person tells the story, others listen and make notes, and in step 2:

2. Collect variables. We are looking for behaviour that is observable or measurable,
and changes over time. We don’t need to quantify everything. We often do this

4

on post-it notes or index cards. To prevent group think, it can help to have
individuals collect variables on their own first, and then share with the group.

3. Determine cause effect relations. Find relations between the variables. Does one
affect the other, is it more or less? You can use pieces of string to connect the
notes from step 2, or draw arrows on the notes. Usually stuck on a flipchart for
easy presentation.

4. Look for loops. Find loops that are self-reinforcing (vicious or virtuous cyles) or
stabilizing.

5. Simplify. Remove unrelated variables. If necessary, split up the diagram.
6. Identify possible interventions. We see if we can change how variables influence

each other or try to find new variables to influence ‘bad’ variables.
7. Tell the story to someone else. Use the diagram(s) as support. Telling it again

will give you new insights and you will get feedback on your understanding of
the situation, plus suggestions on possible solutions from your audience.

Contraindications

This is not a bullet-proof process or a diagramming technique magically suited to all
situations. It has sometimes happened to us that we could not even identify useful
variables. We have had situations where we were looking at the wrong problem, or
did not have enough information. It might also be that you find yourself in a chaotic
situation, or surrounded by unknowable unkowns, where there is no discernable relation
between cause and effect just yet. For these situations, the Cynefin framework or the
Satir Change Model can help to determine where you are.

On to step one

Remember, step one was:

Tell the story. Ask questions, determine scope. It helps if you do this in a
group, one person tells the story, others listen and make notes.

5

https://hbr.org/2007/11/a-leaders-framework-for-decision-making
http://www.satirworkshops.com/files/satirchangemodel.pdf

The story

Once upon a time . . . there was a small IT organisation, consisting of a few developers
(Paul, Mary, and Martin) and Jeff, the group’s manager. Jeff does marketing and
sales as well.

They have been working for over a year now on ‘their’ product, an Innovative Web
System (IWS). They already have three customers, represented by Angela, Fred,
and Brian. The IWS product is partially generic, to keep maintenance costs down.
They provide some custom-built features for each customer, because the team values
‘customer intimacy’ and likes to use feedback to improve IWS further and make it
attractive for more customers.

All three customers are enthusiastic: they see the system’s possibilities, although it does
not meet all their requirements yet. Each customer still needs specific functionality,
but they are confident that the team is going to deliver it.

Because the team works with monthly releases, the customers continuously see progress.
Some releases show more progress than others, but the product as a whole evolves
steadily.

What is the matter?

The developers have just finished doing a release. They have delivered almost everything
they had planned. A new plan has been created for the next release. As a team, they
have a working agreement that for the next release, they won’t promises more features
than they actually delivered in the previous release.

During the most recent planning session, Jeff tried to persuade the team into promising
an extra feature, but the team held firm. “Let’s just do what is realistic. If we go
faster than expected, we can always add some extra features. That is better than
promising too much and then failing to deliver,” according to Martin.

In the morning of the second day after they started working on the new release, Jeff
enters the development room: “Yesterday, I have talked to Ronald again, and I finally
managed to convince him! Our fourth customer! I had to promise him feature FR53i

6

however. He insisted that we build it specifically for his organisation and deliver it this
release.”
“But we have already planned enough for this release and this FR53i feature is a lot of
work” objects Mary.
“This customer is of strategic importance! Ronald is someone who will start selling
the system to others once he is convinced. That will get us a lot of extra customers
and sales. We just have to work a little harder this release, and then everything will
work out!”
“Then we will have to cut corners, I strongly doubt whether the code quality will remain
acceptable,” says Paul reluctantly, “I’m afraid we will experience defects that will be
hard to track down.”
“No problem, you can just refactor a bit extra during the next release and everything
will be all right. I see you all understand the importance of going the extra mile, so
then it’s a deal!” Jeff quickly leaves for his office.
The developers have their doubts, but they have also become enthusiastic about
getting a fourth customer on board. Ronald is a difficult person to persuade, having
him on board is quite a big thing. So everyone works like mad to build the extra
feature on time. Towards the end of the release, pressure and overtime increase. . . .

Step two: identify variables

Variables are properties of the system that we can observe or measure (circles). We
denote variables in the story by making them bold.
Sitting together with our post-its, we find from the story above:

• Customer satisfaction (measurable)
• Features promised (measurable)
• Customer expectations (observable)
• Features planned (measureable)

When discussing variables (e.g. “what happens if Customer satisfaction takes a
nosedive?”), you’ll inevitably find yourself thinking about relations. Try not to write
down the relations at once.

7

Step three: find relations

Causality can work in the same or in the opposite direction. If it works in the opposite
direction, an increase in one variable means a decrease in another variable. In the
diagram below we indicate that by drawing a dot on the edge; you can also use a
minus sign.

What relations do we have?

• When customer satisfaction is low, Jeff decides to promise features.
• The promises raise the customer’s expectations.
• To meet these expectations, the number of features promised increases,
• and when that happens, customer expectations also increase.

So we have two causalility relations that work in the same direction, and one that
works in the opposte direction - when customer satisfaction decreases, the number
of features promised increases.

The next diagram shows the variables and relations we have identified so far. Things
that we can measure are shown by circles, those things we can observe but not measure
are drawn as clouds, in this case customer expectations. The edges show causality
relations.

Figure 2: Customer satisfaction vs planned features

So the diagram we have so far makes us wonder, what happens when more features
are planned? Let the story continue. . .

8

Iterate to step one, the story continues

The pizzas that Jeff brings in at evenings compensate for much. The feeling of doing
something important, pleasing a customer, and being part of a close team gives a kick.

They do cut corners and they’re not satisfied with the quality of their work. Fortunately,
they will be able to make up for it (like adding all those missing unit tests) during the
next release, when things have hopefully quieted down a bit.

We add corners cut to our list of variables. Working in the evenings
means the workload is high.

Mission accomplished. . .

The release is successful, all planned features as well as feature FR53i have been
completed. Everyone is tired and stressed out. Jeff drops by in the development room:
“Well done! I told you so: you’re able to do more than you think. I’m proud of you
all!”

At the next planning meeting, the team has trouble restricting the number of features
to be scheduled. Jeff would like to schedule as much work as they just delivered.

Martin sticks to his guns: “The high velocity is distorted: although we completed
more, we didn’t do it in a sustainable way. We have put in a lot of overtime, skipped
unit testing and refactoring, and didn’t do any code reviews. I don’t know how long
we can keep going like this. Moreover, Jeff, you promised us extra time during this
release to catch up with all the corners we’ve cut. We can probably do a bit more,
but let’s be sensible and work in a way we can sustain over time.”

Jeff gives in, reluctantly.

We add corners cut to the list of variables, as well as pressure to deliver.
We considered adding velocity but could not do much with it at this
point.

9

The next release

Work starts slowly. The team requires time to recover and is hardly productive during
the first week. They try to repair some of the corners cut, but they’re just too tired
to think clearly and don’t accomplish much. In the second week, with some pressure
from Jeff, they start working on the planned features. Slowly they get up to speed.

At this point we could add fatigue but believed later that workload
covered it sufficiently.

Then the different customers start reporting defects. Over the last year, they had
only 2 or 3 defects in each release, now they suddenly have 4 defects in a week. They
also receive an angry e-mail from Ronald, stating his annoyance about a nasty bug he
has found. The team immediately starts solving the defects, to prevent losing Ronald
as their customer.

We add defects to our list of variables. It increases the more corners are
cut, and decreases customer satisfaction

Because of the large workload and the pressure that Jeff puts on the
team, the developers are more inclined to cut corners and choose quick
and dirty solutions, thinking they’ll catch up later. This causes more and
more technical debt as well as more defects. More defects lead to lower
customer satisfaction.

We add design debt to the list of variables. It does not influence anything
yet, but we feel there is more to it, which we will investigate later. The
next diagram shows the variables and cause-effect relations we have so
far.

By the end of the release, they are significantly behind. They still try to complete
as much as possible, but they eventually deliver only half of what they had planned.
Their customers are slightly disappointed.

10

Figure 3: Cutting corners reduces customer satisfaction.

11

Better luck next time

Ronald begins to openly express his doubts about the system. Jeff pays him a visit in
an attempt to placate him. “We just had some bad luck this time, the developers had
a touch of flu at the start of the release, and things just went a bit slowly. I’ve talked
to them sternly, so trust me, they will do a better job next time. We will make sure
the next release also includes feature 8RTv91x, with the HH05 extension.”

Ronald decides to give them another chance. Jeff visits the other customers as well
and assures them that the defects and the non-delivery of features were only incidents.
Next time, everything will go as promised.

Jeff pressures the team to complete 8RTv91x in the next release – failure is not an
option! He schedules a series of features all labelled as “essential”. The team members
notice that the amount of work is much more than the velocity of the previous release;
it is even more than their velocity from the time they didn’t have all these problems.
They submit: they know in their hearts they won’t succeed, but believe they have no
choice.

On the way up?

The team members notice that the new features take them longer. The quick and
dirty solutions they used for the previous releases are a royal pain in the backside. It
takes more and more time to understand their own code, to add unit tests, and to
find causes of defects. Meanwhile, new defects keep on coming in, most of them in
the new features they delivered recently. After Jeff’s lecture, they primarily focus on
feature 8RTv91x. They manage to complete it, at the cost of other features, so much
less then they promised.

This time, Ronald is partially satisfied: “I’m glad you have finished 8RTv91x, but
I expected the x80y8 to be finished as well, that’s what Jeff promised.” The other
customers start complaining. “You have underdelivered, again! It’s as if bugs are the
only thing you people deliver these days. . . ” Fred sighs in frustration.

We add fulfilled promises to the list of variables. Quite often we go over
the story and find more compact names as we go (the previous edition of

12

this story had Probability that promises will be fullfilled as name for
this).

“We will schedule x80y8 right now!” Jeff promises to Ronald. To the other customers
he says: “I’ll have a firm chat with the team, I completely agree with you, things can’t
go on like this. The next release will be all right, we will deliver Xnrg-4.5.4 as well.”
He knows all three customers are dying for that feature.

Jeff calls the team together in a conference room: “We need to work hard to regain
the trust of our customers. I know you can do it, don’t disappoint me! Just leave
out refactoring, we don’t have time for that. I get the impression that testing doesn’t
really contribute to productivity either. If everyone just builds features, everything is
going to be all right.”

He proceeds: “Now that this is clear, here’s the schedule for the next release, including
x80y8 and Xnrg-4.5.4. I’m sure you can do it, although it may look to you like it is
more than what you did before, I’m sure you will be fine. Well, we’ve spent enough
time in this meeting, let’s get back to programming now, so that we can make our
customers happy.”

Or on the way down?

The same thing happens for this release: completing features costs more and more
time because of technical debt. New defects keep on coming in, predominantly caused
by hasty fixes to previous defects. The team slowly lose their motivation. They try to
rush through the features, to prevent being blamed by Jeff. When the release is over,
the velocity turns out to be much lower, they are even unable to agree on whether
some features are finished or not.

We add time per fix or feature to the list of variables. Design debt will
very slowly increase this. Adding motivation is tempting, but we leave it
out for now.

See that we just skipped step 4 and went for step 5? - Simplify. Remove
unrelated variables. If necessary, split up the diagram.

13

After the initial brainstorm, simplification is something that happens more
or less organically. We have it as a step to remind ourselves to do only
have variables that influence our story in a meaningful way.

When Ronald tries out the x80y8 feature he has been dying for, it works, but only
partially. And the part that is least important to him is functional.

“This is the limit!” he screams at Jeff, “No more IWS for me!” He announces his
decision loud and clearly, to everyone who wants to hear it.

Figure 4: Design debt reduces customer satisfaction after a while.

After some time, the design debt starts having a noticeable effect on the
time per fix or feature. The number of fulfilled promises within the

14

time estimated decreases. Not delivering what you’ve promised causes
lower customer satisfaction.

Time for step 4: Look for loops. Find loops that are self-reinforcing
(vicious or virtuous cyles) or stabilizing

This system contains two self-reinforcing loops: promising extra features
indirectly causes even lower customer satisfaction. The system is not
stable. Eventually, customers and developers will leave.

At the coffee machine, Angela meets Mary. Mary looks tired. “It’s not going well with
IWS, in my opinion,” says Angela. “Indeed” says Mary, “I’m sorry for how things are
going.”

“No problem, it won’t bother us much longer,” Angela replies, “We’re looking around
for a replacement system and we have identified two suitable candidates. I feel sorry
for you, I’ve always liked collaborating with the developers.”

“Well, I’m also finished with this,” Mary says, “I had a talk at QXD yesterday. They
have a job that suits me better, I’ll start next month.”

“Congratulations! Too bad for IWS, but I’m happy for you!”

15

Doomed to fail?

If we plot work completed against time, we get the release burndown chart shown
below. The solid line indicates the amount of work remaining, the slope of the line is
indicative for the velocity. The dotted line represents the expectations based on the
initial velocity. If the solid line deviates from the dotted line, then this is ground for
further investigation and possible interventions.

In the first release, the team delivers what is expected. After that, however, the team
delivers less and less. What causes this? What can we do to finish all the work in the
near future?

Figure 5: Features per release

The diagrams of effects give us insight into the underlying dynamics. How does this
help us? More specifically, what does it tell us about possible interventions? We could
promise less or more features, vary the amount of scheduled work, or vary the amount
of pressure on the team. In terms of the model, this means changing the values of
variables.

If we would only change the values of variables, but keep the loops, we don’t touch
the nature of the system and the system remains inherently unstable. We have seen

16

in practice that despite the instability, the system can continue to exist for quite some
time:

• customers don’t have a choice – at least, that’s what they think – and give the
team another chance, again and again,

• customers are afraid to speak up and and put up with this way of working for a
long time,

• the product is not that important for the customer, so the impact of the problems
is small,

• despite everything, the developers try to make the best of it. perhaps it would be
wise to let things escalate early, so that clients get honest feedback about what
is possible. But that goes against everyone’s feeling of pride, professionalism,
and craftsmanship.

Sooner or later however, things will go awry and the system will collapse: customers
run away, people burn out, developers leave.

17

Identify possible interventions

Time for step 6. Identify possible interventions. We see if we can change how variables
influence each other or try to find new variables to influence ‘bad’ variables.

The cause-effect relations we found between the different variables are not all “laws
of nature” or carved in stone: some represent an implicit or explicit choice – a
management decision. The relation between customer satisfaction and extra features
promised is an example of this – if the customer satisfaction drops, it is up to the
team and Jeff to decide if they want to promise extra features or not.

There are more places in the system where there is a choice:

• the amount of pressure to deliver that Jeff puts on the system; it is not
sufficient to only intervene here, because the vicious circle remains intact

• the number of features promised when customer satisfaction changes:
Don’t Overpromise

• the number of extra features planned trying to meet customer expectations:
Limit Work in Process & Don’t Overburden People & Process

• the extent to which developers choose to cut corners when the pressure to
deliver and the workload increase: Developers Say No

We have indicated these management decisions in the diagram below using squares.
Each square represents a choice where the people involved choose explicitly if there is
a positive or negative effect, or no effect at all.

Make sure not to overload the team. This is not easy once the system has started
spiralling down the vicious circle: the team has to take a step back and lower their
expectations. You know that you are going to disappoint one or more customers. It’s
better to do this consciously, instead of just letting it happen. You are going to have
to take your medicine sometime. After that, you can make sure customer expectations
remain realistic. You might lose a customer, but the alternative is much less attractive.

On the other hand, be careful with promising too little and exceeding expectations by
far: this bears the risk that customers will expect you to always deliver much more
than you promise. . .

18

Figure 6: Decisions remediate vicious cycles.

19

Another way to explore options for interventions is adding a variable and see how
that might influence the system. Suppose the team does an experiment with pair
programming. Pair programming often happens spontaneously when a defect needs to
be fixed - developers seek each other out when they are stuck, even though it may
take a while for someone to realise they are stuck.

Whether you add interventions or introduce new variables, be sure to choose a limited
set, and consciously run any proposed change as an experiment for a set duration.
Evaluate afterwards with all involved how it went, and what, if anything, you want
to keep going forward. We find it significantly easier to get buy in for an honest
experiment than a mandatory change.

Figure 7: An experiment with Pair programming may improve several variables

20

We chose pair programming as an example on purpose, because we have seen
dramatic improvements in how long it takes to sustainably ship a new feature. It
is not an easy change to try out, we usually introduce it after having run several
other experiments successfully. Doing an experiment turned a major opponent of pair
programming into one of its major proponents in the company. One never knows
where support comes from. Note that we’re not saying that pair programming is
always the best way to do things, only that it may be very effective in this context.

Another way of intervening is trying to influence or stabilize the vicious loops so that
they do not get out of control. We can work on technical debt explicitly, by scheduling
time to work on refactoring and redesign. This affects the technical debt by reducing
it. Depending on how bad the situation is, it might take some time before the pay-off
becomes visible.

This intervention also affects the number of planned features: the more time we
schedule to work on refactoring & redesign, the less time remains for working on
features. This can be a tough trade-off to make, but we have seen it pay off in
practice.

This also concludes step 7. Tell the story to someone else, which we’ve been doing all
the time you were reading. Some of the interventions you’ve read about we found
from audience suggestions when we presented this story.

21

Figure 8: Planned refactoring & redesign stabilizes both loops

22

Conclusions

The “Promise is Debt” pattern, where someone overpromises to compensate for current
problems, assuming they will catch up later, tends to defeat its purpose. Cutting
corners appears attractive, but is counter-productive. The problem is that the effects
are not immediately visible. Cause and effect are indirectly linked, separated in time,
and influence each other mutually.

The combination of overpromising and cutting corners induces a vicious circle. The
team slips into a destructive spiral of cutting more corners, delivering less and promising
more.

We have observed this spiral in several different organizations. If it occurs, its causes
are usually systemic and cannot be attributed to specific individuals. Looking for a
scapegoat is pointless and will only make things worse.

Manipulation, in this case by Jeff, makes it difficult for people to say no or even to be
aware of the fact that saying no is an option. Saying no should always be an option
for every person involved. In fact, creating a culture where a grounded no at all levels
is appreciated, is one of the most cost-effective interventions higher level management
can make.

We hope our steps help you tell better stories, creating shared understanding that
enables you and your co-workers to find lasting improvements.

By making your mental models and assumptions explicit and discussing them, you
will see the available choices more clearly. This will let you identify those choices that
make a structural improvement to the system dynamics.

Telling stories with diagrams of effects can make hard to pin down effects with delay
and vicious circles visible and solvable. We wish you happy story telling!

23

�

24

References

Gerald M. Weinberg, Quality Software Management, volumes 1-4: Systems Thinking,
First Order Measurement, Congruent Action, Anticipating Change

In depth application of systems thinking to all kinds of problems in software
organisations. Republished on Leanpub as the Quality Software bundle.

Gerald M. Weinberg: More Secrets of Consulting, The Consultant’s Tool Kit

Introduction to some of Virgina Satir’s tools.

Peter M. Senge, The Fifth Discipline: The Art & Practice of the Learning Organization,
1994

Senge applies systems thinking to learning organisations. He discusses,
among other things, causal loop diagrams and a number of archetypes –
recurring systemic patterns.

Donella H. Meadows, Places to intervene in a system, Whole Earth Magazine Winter
1997, www.developerdotstar.com/mag/articles/places_intervene_system.html

Essay providing an overview of different ways of intervening is a system.

Donella H. Meadows, Thinking in Systems (2008)

Good introduction to system thinking from one of the pioneers in the field

David J. Snowden, Mary E. Boone, A Leader’s Framework for Decision Making, in:
Harvard Business Review, November 2007

Introducing the Cynefin framework, which might help to determine what
kind of systemic tools to use.

25

https://leanpub.com/b/qualitysoftware
http://www.geraldmweinberg.com/Site/More_Secrets.html
http://www.developerdotstar.com/mag/articles/places_intervene_system.html
https://hbr.org/2007/11/a-leaders-framework-for-decision-making

Marc Evers, Nynke Fokma, Willem van den Ende, Satir Change Model
www.satirworkshops.com/files/satirchangemodel.pdf

Two page summary of the Satir Change Model and some applications.
Chaos is one of the stages in the change model.

Ward Cunningham, OOPSLA ’92 Experience Report - The WyCash Portfolio Manage-
ment System, March 26, 1992 – www.c2.com/doc/oopsla92.html

First paper we know of on technical debt.

Ward Cunningham, Ron Jeffries, and others, Technical Debt
www.c2.com/cgi/wiki?TechnicalDebt

Discussion with examples on how technical debt accumulates in projects.

26

http://www.satirworkshops.com/files/satirchangemodel.pdf
http://www.c2.com/doc/oopsla92.html
http://www.c2.com/cgi/wiki?TechnicalDebt

Authors

Willem van den Ende

Willem van den Ende is a consulting developer. He is always looking for better and
more fun ways to develop software, and helping others do the same. Since 1999 he lets
organisations in benefit from agile software development as an all-hands person: coach,
developer and facilitator. Always active in the local and international community, he
has served as board member of the Agile Alliance, and started several conferences.

Willem is based in Bath, UK.

E-mail: willem@qwan.eu | Phone: +44 743 8651 672 | Twitter: @mostalive

Marc Evers

Marc develops developers, himself and other roles. He works as an independent
coach, trainer and consultant in the field of (agile) software development and software
processes. Marc develops true learning organizations that focus on continuous reflection
and improvement: apply, inspect, adapt. Marc is co-founder of the Agile Open and
XP Days Benelux conferences, and the Agile Holland user group.

Marc is based in Nieuwegein, The Netherlands

E-mail: marc@qwan.eu | Phone: +31 6 44 55 000 3 | Twitter: @marcevers

Rob Westgeest

Rob is a developing consultant. After years of experience with object-oriented software
development with UML, several development processes and project approaches as
developer, trainer and project leader, Rob worked on his first XP project in 2000. He
has supported projects and people in the application of agile practices, principles and
values since then. He’s made plenty of mistakes, so his teams don’t have to.

Rob is based in Hilvarenbeek, The Netherlands

E-mail: rob@qwan.eu | Phone: +31 6 4577 6328 | Twitter: @westghost

27

http://www.agilealliance.org/
mailto:willem@qwan.eu
http://www.agileopen.net/
http://www.xpday.net/
mailto:marc@qwan.eu
mailto:rob@qwan.eu

About QWAN

We are Quality Without A Name, a partnership of pragmatic practitioners. We develop
software, teams, and individuals. We do so by coaching, mentoring, and training
tailored to the needs of our clients. We don’t shy away from taking responsibility, and
are only happy when you are successful in the short term as well as the long term. We
specialise in agile and lean software development. And we develop software ourselves -
above all, we are software developers.

Talk to us, it might help. . .

Would you like to know what systems thinking (and doing!) can do for you and your
organisation? We look forward to investigating your situation with you, for example
through a workshop or mentoring. Feel free to contact us, we’re always interested in
new stories and tough problems.

Email: info@qwan.eu | www.qwan.eu

UK Office: NL Office:
Living Software Ltd Elsakkersstraat 25
The Guild 5081 GL Hilvarenbeek
High Street The Netherlands
Bath BA1 5EB Chamber of commerce Tilburg:
United Kingdom 18071671
Companies House for England
and Wales: 08849005

28

http://www.qwan.eu/

Get your Code Smells & Refactorings Card decks from:
www.qwan.eu/shop

www.qwan.eu

